black/blib2to3/pgen2/parse.py
Michael J. Sullivan 3e60f6d454 Support compilation with mypyc (#1009)
* Make most of blib2to3 directly typed and mypyc-compatible

This used a combination of retype and pytype's merge-pyi to do the
initial merges of the stubs, which then required manual tweaking to
make actually typecheck and work with mypyc.

Co-authored-by: Sanjit Kalapatapu <sanjitkal@gmail.com>
Co-authored-by: Michael J. Sullivan <sully@msully.net>

* Make black able to compile and run with mypyc

The changes made fall into a couple categories:
 * Fixing actual type mistakes that slip through the cracks
 * Working around a couple mypy bugs (the most annoying of which being
   that we need to add type annotations in a number of places where
   variables are initialized to None)

Co-authored-by: Sanjit Kalapatapu <sanjitkal@gmail.com>
Co-authored-by: Michael J. Sullivan <sully@msully.net>
2019-10-30 07:29:29 -07:00

238 lines
8.8 KiB
Python

# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Parser engine for the grammar tables generated by pgen.
The grammar table must be loaded first.
See Parser/parser.c in the Python distribution for additional info on
how this parsing engine works.
"""
# Local imports
from . import token
from typing import (
Optional,
Text,
Sequence,
Any,
Union,
Tuple,
Dict,
List,
Callable,
Set,
)
from blib2to3.pgen2.grammar import Grammar
from blib2to3.pytree import NL, Context, RawNode, Leaf, Node
Results = Dict[Text, NL]
Convert = Callable[[Grammar, RawNode], Union[Node, Leaf]]
DFA = List[List[Tuple[int, int]]]
DFAS = Tuple[DFA, Dict[int, int]]
def lam_sub(grammar: Grammar, node: RawNode) -> NL:
assert node[3] is not None
return Node(type=node[0], children=node[3], context=node[2])
class ParseError(Exception):
"""Exception to signal the parser is stuck."""
def __init__(
self, msg: Text, type: Optional[int], value: Optional[Text], context: Context
) -> None:
Exception.__init__(
self, "%s: type=%r, value=%r, context=%r" % (msg, type, value, context)
)
self.msg = msg
self.type = type
self.value = value
self.context = context
class Parser(object):
"""Parser engine.
The proper usage sequence is:
p = Parser(grammar, [converter]) # create instance
p.setup([start]) # prepare for parsing
<for each input token>:
if p.addtoken(...): # parse a token; may raise ParseError
break
root = p.rootnode # root of abstract syntax tree
A Parser instance may be reused by calling setup() repeatedly.
A Parser instance contains state pertaining to the current token
sequence, and should not be used concurrently by different threads
to parse separate token sequences.
See driver.py for how to get input tokens by tokenizing a file or
string.
Parsing is complete when addtoken() returns True; the root of the
abstract syntax tree can then be retrieved from the rootnode
instance variable. When a syntax error occurs, addtoken() raises
the ParseError exception. There is no error recovery; the parser
cannot be used after a syntax error was reported (but it can be
reinitialized by calling setup()).
"""
def __init__(self, grammar: Grammar, convert: Optional[Convert] = None) -> None:
"""Constructor.
The grammar argument is a grammar.Grammar instance; see the
grammar module for more information.
The parser is not ready yet for parsing; you must call the
setup() method to get it started.
The optional convert argument is a function mapping concrete
syntax tree nodes to abstract syntax tree nodes. If not
given, no conversion is done and the syntax tree produced is
the concrete syntax tree. If given, it must be a function of
two arguments, the first being the grammar (a grammar.Grammar
instance), and the second being the concrete syntax tree node
to be converted. The syntax tree is converted from the bottom
up.
A concrete syntax tree node is a (type, value, context, nodes)
tuple, where type is the node type (a token or symbol number),
value is None for symbols and a string for tokens, context is
None or an opaque value used for error reporting (typically a
(lineno, offset) pair), and nodes is a list of children for
symbols, and None for tokens.
An abstract syntax tree node may be anything; this is entirely
up to the converter function.
"""
self.grammar = grammar
self.convert = convert or lam_sub
def setup(self, start: Optional[int] = None) -> None:
"""Prepare for parsing.
This *must* be called before starting to parse.
The optional argument is an alternative start symbol; it
defaults to the grammar's start symbol.
You can use a Parser instance to parse any number of programs;
each time you call setup() the parser is reset to an initial
state determined by the (implicit or explicit) start symbol.
"""
if start is None:
start = self.grammar.start
# Each stack entry is a tuple: (dfa, state, node).
# A node is a tuple: (type, value, context, children),
# where children is a list of nodes or None, and context may be None.
newnode: RawNode = (start, None, None, [])
stackentry = (self.grammar.dfas[start], 0, newnode)
self.stack: List[Tuple[DFAS, int, RawNode]] = [stackentry]
self.rootnode: Optional[NL] = None
self.used_names: Set[str] = set()
def addtoken(self, type: int, value: Optional[Text], context: Context) -> bool:
"""Add a token; return True iff this is the end of the program."""
# Map from token to label
ilabel = self.classify(type, value, context)
# Loop until the token is shifted; may raise exceptions
while True:
dfa, state, node = self.stack[-1]
states, first = dfa
arcs = states[state]
# Look for a state with this label
for i, newstate in arcs:
t, v = self.grammar.labels[i]
if ilabel == i:
# Look it up in the list of labels
assert t < 256
# Shift a token; we're done with it
self.shift(type, value, newstate, context)
# Pop while we are in an accept-only state
state = newstate
while states[state] == [(0, state)]:
self.pop()
if not self.stack:
# Done parsing!
return True
dfa, state, node = self.stack[-1]
states, first = dfa
# Done with this token
return False
elif t >= 256:
# See if it's a symbol and if we're in its first set
itsdfa = self.grammar.dfas[t]
itsstates, itsfirst = itsdfa
if ilabel in itsfirst:
# Push a symbol
self.push(t, self.grammar.dfas[t], newstate, context)
break # To continue the outer while loop
else:
if (0, state) in arcs:
# An accepting state, pop it and try something else
self.pop()
if not self.stack:
# Done parsing, but another token is input
raise ParseError("too much input", type, value, context)
else:
# No success finding a transition
raise ParseError("bad input", type, value, context)
def classify(self, type: int, value: Optional[Text], context: Context) -> int:
"""Turn a token into a label. (Internal)"""
if type == token.NAME:
# Keep a listing of all used names
assert value is not None
self.used_names.add(value)
# Check for reserved words
ilabel = self.grammar.keywords.get(value)
if ilabel is not None:
return ilabel
ilabel = self.grammar.tokens.get(type)
if ilabel is None:
raise ParseError("bad token", type, value, context)
return ilabel
def shift(
self, type: int, value: Optional[Text], newstate: int, context: Context
) -> None:
"""Shift a token. (Internal)"""
dfa, state, node = self.stack[-1]
assert value is not None
assert context is not None
rawnode: RawNode = (type, value, context, None)
newnode = self.convert(self.grammar, rawnode)
if newnode is not None:
assert node[-1] is not None
node[-1].append(newnode)
self.stack[-1] = (dfa, newstate, node)
def push(self, type: int, newdfa: DFAS, newstate: int, context: Context) -> None:
"""Push a nonterminal. (Internal)"""
dfa, state, node = self.stack[-1]
newnode: RawNode = (type, None, context, [])
self.stack[-1] = (dfa, newstate, node)
self.stack.append((newdfa, 0, newnode))
def pop(self) -> None:
"""Pop a nonterminal. (Internal)"""
popdfa, popstate, popnode = self.stack.pop()
newnode = self.convert(self.grammar, popnode)
if newnode is not None:
if self.stack:
dfa, state, node = self.stack[-1]
assert node[-1] is not None
node[-1].append(newnode)
else:
self.rootnode = newnode
self.rootnode.used_names = self.used_names